

- 3.1** Let  $\mathcal{M}^n$  be a smooth manifold and let  $(x^1, \dots, x^n)$  a local system of coordinates around  $p \in \mathcal{M}$ . Let also  $S \in \otimes^k T_p \mathcal{M} \otimes^l T_p^* \mathcal{M}$  be a tensor of type  $(k, l)$  at  $p$  and let  $S^{i_1 i_2 \dots i_k}_{j_1 j_2 \dots j_l}$  be its corresponding components. We will define the *contraction*  $\text{tr}(S)$  to be the tensor

$$\text{tr}(S) = S^{\alpha i_2 \dots i_k}_{\alpha j_2 \dots j_l} \frac{\partial}{\partial x^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{j_2} \otimes \dots \otimes dx^{j_l},$$

i.e. the components of  $\text{tr}(S)$  in the  $(x^1, \dots, x^n)$  coordinates are simply the components of  $S$  after summing over the first covariant and contravariant indices. Show that  $\text{tr}(S)$  is well-defined *independently* of the choice of coordinate system, i.e. show that if  $(y^1, \dots, y^n)$  is a different coordinate system around  $p$  and  $\tilde{S}^{i_1 i_2 \dots i_k}_{j_1 j_2 \dots j_l}$  are the components of  $S$  with respect to these coordinates, then

$$\begin{aligned} S^{\alpha i_2 \dots i_k}_{\alpha j_2 \dots j_l} \frac{\partial}{\partial x^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial x^{i_k}} \otimes dx^{j_2} \otimes \dots \otimes dx^{j_l} \\ = \tilde{S}^{\alpha i_2 \dots i_k}_{\alpha j_2 \dots j_l} \frac{\partial}{\partial y^{i_2}} \otimes \dots \otimes \frac{\partial}{\partial y^{i_k}} \otimes dy^{j_2} \otimes \dots \otimes dy^{j_l}. \end{aligned}$$

**Remark.** In the case when  $S$  is of type  $(1, 1)$ , and hence can be viewed as a linear map  $S : T_p \mathcal{M} \rightarrow T_p \mathcal{M}$ ,  $\text{tr}(S)$  is simply the trace of the matrix representation of  $S$ ; in that case, the statement of the above exercise reduces to the well-known fact that the trace of a linear automorphism is independent of the choice of basis of vectors.

- 3.2** Let  $\mathcal{M}$  be a smooth manifold of dimension  $n$ . In this exercise, we will prove that the tangent bundle  $T\mathcal{M} = \cup_{p \in \mathcal{M}} T_p \mathcal{M}$  naturally admits the structure of a manifold of dimension  $2n$ .

Let  $\{\mathcal{U}_\alpha, \phi_\alpha : \mathcal{U}_\alpha \rightarrow \mathbb{R}^n\}_\alpha$  be a smooth atlas on  $\mathcal{M}$ . For any pair  $(\mathcal{U}_\alpha, \phi_\alpha)$  in this atlas, let  $(x^1, \dots, x^n)$  be the associated system of coordinates; we can define a map

$$\tilde{\phi}_\alpha : T\mathcal{U}_\alpha = \cup_{p \in \mathcal{U}_\alpha} T_p \mathcal{M} \rightarrow \phi_\alpha(\mathcal{U}_\alpha) \times \mathbb{R}^n$$

as follows:

$$\tilde{\phi}_\alpha(p, v) = (\phi_\alpha(p); dx^1(v), \dots, dx^n(v)).$$

We will equip  $T\mathcal{M}$  with the topology that makes all these maps homeomorphisms, i.e.:

$$\mathcal{V} \subset T\mathcal{M} \text{ is open iff } \tilde{\phi}_\alpha(\mathcal{V} \cap T\mathcal{U}_\alpha) \subset \mathbb{R}^n \times \mathbb{R}^n \text{ is open for all } \alpha.$$

- (a) Show that  $T\mathcal{M}$  equipped with the above topology is *Hausdorff* and *second countable*.
- (b) Show that  $\{(T\mathcal{U}_\alpha, \tilde{\phi}_\alpha)\}_\alpha$  constitutes a *smooth* atlas on  $T\mathcal{M}$ .
- (c) Show that the base projection map  $\pi : T\mathcal{M} \rightarrow \mathcal{M}$  (which acts by  $\pi : T_p \mathcal{M} \rightarrow p$ ) is smooth. Moreover, for any smooth vector field  $X \in \Gamma(T\mathcal{M})$ , show that the map  $X : \mathcal{M} \rightarrow T\mathcal{M}$  (sending any  $p \in \mathcal{M}$  to  $X_p \in T_p \mathcal{M}$ ) is a smooth *immersion*.

**3.3** Let  $X, Y$  be smooth vector fields on a smooth manifold  $\mathcal{M}$ . We define the commutator (or *Lie bracket*)  $[X, Y]$  of  $X$  and  $Y$  to be the linear function  $[X, Y] : C^\infty(\mathcal{M}) \rightarrow C^\infty(\mathcal{M})$  defined by

$$[X, Y](f) = X(Y(f)) - Y(X(f)) \quad \text{for all } f \in C^\infty(\mathcal{M}).$$

- (a) Show that  $[X, Y]$  is a smooth vector field on  $\mathcal{M}$ .
- (b) Show that  $[\cdot, \cdot]$  satisfies the following algebraic identities for any  $X, Y, Z \in \Gamma(\mathcal{M})$ :
  1.  $[X, Y] = -[Y, X]$  (*anticommutativity*).
  2.  $[X, aY + bZ] = a[X, Y] + b[X, Z]$  for any constants  $a, b$  ( $\mathbb{R}$ -*linearity*).
  3.  $[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0$  (*Jacobi identity*).
- (c) Is  $[\cdot, \cdot] : \Gamma(\mathcal{M}) \times \Gamma(\mathcal{M}) \rightarrow \Gamma(\mathcal{M})$  a  $(1, 2)$ -tensor field?

**3.4** Let  $(M, g)$  be a smooth Riemannian manifold.

- (a) For any 1-form  $\omega$  on  $\mathcal{M}$ , let us consider the vector field  $\omega^\sharp$  defined so that, for any  $X \in \Gamma(\mathcal{M})$ :

$$g(X, \omega^\sharp) \doteq \omega(X).$$

Compute the components of  $\omega^\sharp$  in any local coordinate chart  $(x^1, \dots, x^n)$ .

- (b) We will define the *gradient* of a function  $f : \mathcal{M} \rightarrow \mathbb{R}$  to be the vector field

$$\nabla f \doteq df^\sharp.$$

Compute the gradient of a function  $f : \mathbb{R}^2 \rightarrow \mathbb{R}$  in polar coordinates.

- (c) We can naturally construct a positive definite and symmetric  $(2, 0)$ -tensor  $\tilde{g}$  acting as an inner product on the space of 1-forms by the formula

$$\tilde{g}(\omega_1, \omega_2) \doteq g(\omega_1^\sharp, \omega_2^\sharp) \quad \text{for all } \omega_1, \omega_2 \in \Gamma^*(\mathcal{M}).$$

Compute the coefficients  $\tilde{g}^{ij}$  of  $\tilde{g}$  in any local coordinate system as a function of the coefficients of  $g$ .

**3.5** Let  $\mathcal{M}^n$  be a smooth manifold and  $\omega : \Gamma(\mathcal{M}) \rightarrow C^\infty(\mathcal{M})$  be a  $C^\infty(\mathcal{M})$ -linear functional. We will show that  $\omega$  is in fact an 1-form on  $\mathcal{M}$ , i.e. if  $Y \in \Gamma(\mathcal{M})$  then, for all  $p \in \mathcal{M}$ ,  $(\omega(Y))(p)$  depends only on  $Y|_p$ .

- (a) Explain why it suffices to show that if  $Y$  vanishes at  $p$ , then  $(\omega(Y))(p) = 0$ .
- (b) Let  $\mathcal{U}$  be an open neighborhood of  $p$  covered by a coordinate chart  $(x^1, \dots, x^n)$ . Show that there exists an open neighborhood  $\mathcal{V}$  of  $p$  contained inside  $\mathcal{U}$  and smooth vector fields  $\{X_i\}_{i=1}^n$  on  $\mathcal{M}$  such that  $X_i = \frac{\partial}{\partial x^i}$  on  $\mathcal{V}$ . (*Hint: Use a suitable cut-off function  $\psi : \mathcal{M} \rightarrow [0, +\infty)$  which is equal to 1 in small a neighborhood of  $p$ .*)

(c) Show that if  $Y|_p = 0$ , then there exists a finite number of vector fields  $\{V_k\}_k$  such that

$$Y = \sum_k f_k V_k,$$

where the functions  $f_k \in C^\infty(\mathcal{M})$  satisfy  $f_k(p) = 0$ . Deduce that  $\omega(Y)(p) = 0$ .

The same argument should also work for more general  $C^\infty(\mathcal{M})$ -multilinear maps  $T : \Gamma^*(\mathcal{M}) \times \cdots \times \Gamma^*(\mathcal{M}) \times \Gamma(\mathcal{M}) \times \cdots \times \Gamma(\mathcal{M}) \rightarrow C^\infty(\mathcal{M})$ .